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Abstract. Recently, Santos obtained a generalized entropy using four assumptions which stated
that an entropy must: (i) be a continuous function of the probabilitie} (ii) be a monotonic
increasing function of the number of stat®, in the case of equiprobability; (iii) satisfy
SIA+B)/k = ST (A)/k+ ST(B)/k+ (1 - q)SqT(A)SqT(B)/kZ (where A and B are two
independent systems) and (iv) satisfy the relasigii{ p;}) = ST ({pr, pu}D)+pi ST (pi/pLh)+

Pl ST (pi/pu}). wherepy + py =1 (pr = Y1 pi and py = YV, pi). Santos showed

that the only function which satisfies all of these properties is the generalized Tsallis entropy.
In this paper we perform a similar analysis and we obtain a family of entropies which are

equivalent to the Tsallis entropy. We also discuss the Shannon inequality in the context of the
generalized Tsallis entropy.

1. Introduction

Recently, Santos [1] obtained a generalized entropy using four assumptions stating that an
entropy must (i) be a continuous function of the probabilitigs}; (i) be a monotonic
increasing function of the number of staté®, in the case of equiprobability; (iii)
satisfy S/(A + B)/k = SI'(A)/k + S](B)/k + (1 — ¢)S](A)S!(B)/k* (A and B

being two independent systems) and (iv) satisfy the relaﬁﬁdpi}) = SqT({pL, pm)) +

piSTUpi/peh) + plySI(pi/pu}), where pp + py = 1 (pp = Y pi and py =
ZKWL pi). Santos showed that the only function satisfying all of these properties is the
generalized Tsallis entropy [2]

1->r
SI = k—=-L 1.1
=k (1.1)
wherek is a positive constant angl is a real number. Foy — 1 we recover Shannon
entropy

SqT_>1 =—k Z piInp;. (1.2)

Our purpose here is to perform a similar analysis, however, we employ a general
parametew in the non-extensive entropy property(AB) = S(A) + S(B) + aS(A)S(B),
where A and B are two distinct systems). We show that by takings a function ofy, it
is possible to obtain a family of entropies, equivalent to Tsallis entropy. We also discuss
the general behaviour of” for two interacting systems. More precisely, we obtain the
generalized Shannon inequality and we discuss its physical implications.
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2. Generalized entropy

To begin the analysis, we first list the assumptions as given in Landsberg [3] (except that
we modify the third one).

(I) The accessible quantum states of an isolated equilibrium system are equally probable,
i.e. the probabilities{p;} have the same valued/n}, wheren is the total number of
accessible states of the system. The entropy of the system approaches the equilibrium state,
which cannot decrease

S(p1, ... pn) < SA/n, ..., 1/n). (2.1)
(1) The addition of an inaccessible state; (= 0) cannot affect the entropy
S(p1, ..., P, 0) = S(p1, ..., pu). (2.2)

(1.1 Consider two arbitrary non-interacting systemsand B with p/** = p/p?.
The entropy of a composite system satisfi¢gd B) = S(A) + S(B) +aS(A)S(B), wherea
is a real number. 1A and B are identical, ther§(AB) = 2S5(A) + a[S(4)]%.

(1.1 In the case of interacting system$ and B (with the probabilitiespy, ..., p,
for A and the probabilitieg;1, ¢i2, ... for B), the composite system satisfi$AB) =
S(A) + Sa(B) + aS(A)SA(B), where S, (B) is the normalized mean conditional entropy
given by

d
; Pi Si(B)
Sa(B) = Z—d (2.3)
2, P
andd is a real number.
If the systemsA and B do not interact,q;1, g2, ... are independent of, hence
S, pd
Sa(B) = BLAD = SOLIL — §(B).

These last two assunl"nptions deserve some comments. In (Ill.I) we have introduced
S(AB) with a general parameter and we also assume that it does not depend on the
systemsA and B. The last term of this relation represents a breakdown of the extensive
property of standard theory, except for—~ 0 (we will show that we can recover the form
of standard entropy for the composite system). Moreover, the use of this general parameter
opens the possibility of studying different forms of generalized entropies. In (lll.II) we have
the generalization of normalized mean conditional entropy with the paraaeteertainly,

S4(B) depends on both the probabilities and the paraméterWe will show that the
parametewu along withd are important to obtain new forms of generalized entropies. For
instance, we will show that i tends to zerod must tend to 1 (and vice versa) and so we
recover the standard entropy and the usual mean value. Therefore, to obtain generalized
entropies we must takeé £ 1 anda # 0.

Now, in order to obtain the generalized entropies we divide the problem into two steps.
In the first step we use assumptions (1), (Il) and (lll.I) for the non-interacting systems to
prove thatS(1/n,...,1/n) = %[—l + n’]. The entropy at the equilibrium system is a
non-decreasing function of its arguments

L(n)=SA/n,...,1/n,00 < SA/(n+1),...,1/(n + 1)) = L(n + 1). (2.4)

Next, we considern mutually independent schemes?”) (; = 1,2,...,m), each
consisting ofr equally likely events. If we consider them as a single scheme we have
r™ equally likely events with entropg (™). If we now consider them as a product scheme
the entropy is calculated (using (lll.I)) as follows.
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Form = 2, it is immediately verified that
1
L(r?) = 2L(r) + a[L(")]* = =[(1 + aL(r))* — 1]. (2.5)
a

For m = 3, the product scheme can be calculated in the following way. We consider
these three schemes as independent systems and each of theracuesly likely events.
This way, we can first calculate the entropy by choosing any two of these systems and the
result is given by (2.5). Then, we use this result with the third system and assumption (l11.1)
to obtain that

L(r®) 2[(1 +al(r)? =1+ L(r)+a- L) - 2[(1 +aL(r)? —1]

1
[+ aL(r))® —1].
For all positive integers andm, we use the induction method, and we have
1
L™ = 5[(1—1- aL(r))™ —1]. (2.6)

This is the generalization of standard entropy, i.e. in the linit> 0 we recover the
well known resultL (r™) = mL(r).
It is easy to guess that the following function satisfies (2.6)

L(r) = %[—1+ rP] (2.7)

whereb is a constant.
It is noteworthy that, to recover the additivity property for entropy, we must take both,
a andb from equation (2.7) tending to zero, simultaneously.
To prove (2.7) we assume s andn are arbitrary positive integers with determined
by
st < L (2.8)
By applying the logarithm in (2.8) we have
m s mtl
n Inr n
On the other hand, we write(x) for each termx of (2.8), i.e.L(r™) < L(s") < L(™1).
Then, using relation (2.6), we obtain

m IN(X+ aL(s)) < m+1

: (2.9)

n INA+aL(r)) n ( )
Combining (2.9) and (2.10), we find that
IN(1+aL I 1
In@+aL(s)) Ins <z (2.11)
INnA+aL()) Inr n
Sincen is arbitrary, we can take arbitrarily high value, and we obtain
IN(L+ aL(s)) _ IN(L+aL(r)) —b 2.12)
In(s) In(r)
whereb is a constant independent ofandr. Therefore,
1
L(n) = =[-1+n"] (2.13)
a

for all n. This is in accordance with equation (2.7). From equation (2.4), we immediately
verify thatb > 0.
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In the next step, we consider two interacting systemsand B to prove that
S(p1, ..., pn) = Zi(p;‘ —1)/a. To do so, we suppose two interacting probability schemes
A and B. Consider that the probabilities of A giving by p;, = g;/g, where theg’'s are
positive integers withy . g; = g. Consider that a dependent sche®éasn groups of
events so that thah group has; events. If eventd; occurs, we assume that all events of
theith group are equally likely with probability/%;. Hence, the conditional entrofy(B)
of B, given A is in stateA;, is obtained by (2.13), replacing by g;

Si(gi) = %[—14-8;)]- (2.14)

By using (lll.1) we have
> piSi(B) _ ¥ pi(=1+gh)
Y pf ay,;p}

However, the entropy of a composite system at the equilibrium state consigtemfally
likely events

Sa(B) = (2.15)

1
S(AB) = =[-1+ g"]. (2.16)
a
It follows from (IIL.11) that

sy = SAB) = SaB) _ (o = p)
T 1+4aSaB) ay’; p]/-’+d

As we can see, equation (2.17) contains three arbitrary constahtandd; to obtain the
mean entropy we should take+ d = 1. Consequently,

Zipid_l
a

(2.17)

S(A) = (2.18)

where we have used the conditidn; p; = 1.

We should note that if we take the parametein (2.18) tending to 1 we must take
a tending to zero and so we recover the standard entropy. As a consequence, to obtain
the generalized entropies with a non-extensive property given by (lll.I) we need to use the
unusual average, i.e. it should have 1 anda # 0.

Of course, the entropy (2.18) can assume many different forms depending on the
expressions oft andd. For example, fod = q¢ anda = (1 — ¢q)/k we obtainb =1 —g¢q
andg < 1, henceS becomes

1-Y,p!
ST = p—=L0, 2.19
| =k S (2.19)
This is equal to equation (1.1). Moreoveﬁg may be rewritten as follows
> plpi =1
§T — & lilFi = 18T (p; 2.20
y T Xi:p, 4i (Pi) (2.20)
and
SI(pi) = —k@— p /(g - D). (2.21)

So, we may interpreSqT as an average (or mean) that has been taken over a probability
distribution{p/}. In addition, it is important to emphasize that the form of this average is
in agreement with the mean internal enefgy= >", p/¢; obtained by Curado and Tsallis
[4] which they have used to obtain the connection with the thermodynamics.
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Now, ford = ¢ anda = 2'~7 — 1 we obtain the Ddirczi entropy [5]

SD_lelq_l
9 9l-¢g _ 1 °

These entropie§qT and SqD are equivalent because they only differ by a multiplicative

constant. Furthermore, we should note that in both casesdb tend to zero foiy — 1,

simultaneously. This means that the extensivity limit is preserved for both entropies.
Certainly, we can make other kinds of entropies by taking different formsgf and

d(g). However, it is easy to show that they can be transformed from one to another and the

differences among them are a multiplicative constant. Therefore, they constitute a family

of equivalent generalized entropies.

(2.22)

3. General behaviour ofof for two interacting systems

In this section we address the question of the general behaviour of the generalized Tsallis
entropy for two interacting systems. In particular, we analyse the problem of decreasing
Tsallis entropy related to the additional information on the system. To do so, let us use the
following inequality, valid for any continuous strictly monotonic convex funcifaw) (see

[6, theorem 86]).

¢(Zx) < Ylagto) (3.1)

wherea; > 0 andx; > 0 such that)_, x; = 1.
Now, for Tsallis entropy we considefr(x;) given by

— x4
o(x) = 0 for g > 0. 3.2
1-¢q
From this and equation (3.1) we have that
8 — 8 _ > pigii — (O plgij) < Z pi(gij-g) (3.3)
1-¢ 1-gq h 1—gq '

i

whereg; is as the total probabilityy", pfg;; of finding the eventB; in systemB. Now,
adding over; and multiplying by—k we immediately find that

Sa(B) < S(B). (3.4)
This inequality can be easily extended to
S(AB) = S(A) + Sa(B) + (1 — ¢)S(A)Sa(B) < S(A) + S(B) + (1 — q)S(A)S(B). (3.5)

Therefore, we have obtained the remarkable result that the additional information on
the system decreases the entropy. The well known example of this result can be associated
to Maxwell’s demon, which is capable of decreasing entropy by using the information of
the system without the performance of work.

4. Conclusion

Therefore, we have shown that in order to obtain the generalized entropies we have modified,
in a smooth way, one of the three assumptions given in Landsberg [3]. In particular, we
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have replaced the additivity proper§(AB) = S(A) + S(B) by S(AB) = S(A) + S(B) +
aS(A)S(B) and the normalized mean conditional entraf}(B) = Y, p; S;(B) by

> p{Si(B)

> pf
and we have also used the basic concepts of thermostatistics. By using the three assumptions
(O, (1) and (1) we have shown that there is a family of equivalent generalized entropies
including the cases of Tsallis and Bari entropies. In addition, we have obtained the mean
entropy (2.20) which was taken over the probability distribugipfy}. This is in accordance
with the mean internal energy, = >", p/¢; obtained by Curado and Tsallis [4] which they
have used to obtain the connection with the thermodynamics. Therefore, this approach is
very close to the development of the standard statistics

We have also discussed the general behaviOLﬂ’qTofor two interacting systems. It is
shown by (3.5) that the entropy decreases with the additional information on the system.
This means that Maxwell's demon also actsxjn

Sa(B) =
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