
Note on generalization of Shannon theorem and inequality

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys. A: Math. Gen. 31 8159

(http://iopscience.iop.org/0305-4470/31/40/010)

Download details:

IP Address: 171.66.16.104

The article was downloaded on 02/06/2010 at 07:16

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/40
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.31 (1998) 8159–8164. Printed in the UK PII: S0305-4470(98)94646-7

Note on generalization of Shannon theorem and inequality

Kwok Sau Fa
Departamento de Fı́sica, Universidade Estadual de Maringá, Campus Universitário, Av.
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Abstract. Recently, Santos obtained a generalized entropy using four assumptions which stated
that an entropy must: (i) be a continuous function of the probabilities{pi}; (ii) be a monotonic
increasing function of the number of statesW , in the case of equiprobability; (iii) satisfy
STq (A + B)/k = STq (A)/k + STq (B)/k + (1 − q)STq (A)STq (B)/k2 (whereA and B are two

independent systems) and (iv) satisfy the relationSTq ({pi}) = STq ({pL, pM })+pqLSTq ({pi/pL})+
p
q

MS
T
q ({pi/pM }), wherepL + pM = 1 (pL =

∑WL
i=1 pi andpM =

∑W
i=WL pi ). Santos showed

that the only function which satisfies all of these properties is the generalized Tsallis entropy.
In this paper we perform a similar analysis and we obtain a family of entropies which are
equivalent to the Tsallis entropy. We also discuss the Shannon inequality in the context of the
generalized Tsallis entropy.

1. Introduction

Recently, Santos [1] obtained a generalized entropy using four assumptions stating that an
entropy must (i) be a continuous function of the probabilities{pi}; (ii) be a monotonic
increasing function of the number of statesW , in the case of equiprobability; (iii)
satisfy STq (A + B)/k = STq (A)/k + STq (B)/k + (1 − q)STq (A)S

T
q (B)/k

2 (A and B
being two independent systems) and (iv) satisfy the relationSTq ({pi}) = STq ({pL, pM}) +
p
q

LS
T
q ({pi/pL}) + pqMSTq ({pi/pM}), where pL + pM = 1 (pL =

∑WL

i=1pi and pM =∑W
i=WL

pi). Santos showed that the only function satisfying all of these properties is the
generalized Tsallis entropy [2]

STq = k
1−∑p

q

i

q − 1
(1.1)

wherek is a positive constant andq is a real number. Forq → 1 we recover Shannon
entropy

STq→1 = −k
∑
i

pi lnpi. (1.2)

Our purpose here is to perform a similar analysis, however, we employ a general
parametera in the non-extensive entropy property (S(AB) = S(A)+ S(B)+ aS(A)S(B),
whereA andB are two distinct systems). We show that by takinga as a function ofq, it
is possible to obtain a family of entropies, equivalent to Tsallis entropy. We also discuss
the general behaviour ofSTq for two interacting systems. More precisely, we obtain the
generalized Shannon inequality and we discuss its physical implications.
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2. Generalized entropy

To begin the analysis, we first list the assumptions as given in Landsberg [3] (except that
we modify the third one).

(I) The accessible quantum states of an isolated equilibrium system are equally probable,
i.e. the probabilities{pi} have the same values{1/n}, where n is the total number of
accessible states of the system. The entropy of the system approaches the equilibrium state,
which cannot decrease

S(p1, . . . , pn) 6 S(1/n, . . . ,1/n). (2.1)

(II) The addition of an inaccessible state (pi = 0) cannot affect the entropy

S(p1, . . . , pn, 0) = S(p1, . . . , pn). (2.2)

(III.I) Consider two arbitrary non-interacting systemsA and B with pA∪Bij = pAi p
B
j .

The entropy of a composite system satisfiesS(AB) = S(A)+ S(B)+ aS(A)S(B), wherea
is a real number. IfA andB are identical, thenS(AB) = 2S(A)+ a[S(A)]2.

(III.II) In the case of interacting systemsA andB (with the probabilitiesp1, . . . , pn
for A and the probabilitiesqi1, qi2, . . . for B), the composite system satisfiesS(AB) =
S(A) + SA(B) + aS(A)SA(B), whereSA(B) is the normalized mean conditional entropy
given by

SA(B) =
∑

i p
d
i Si(B)∑
j p

d
j

(2.3)

andd is a real number.
If the systemsA and B do not interact,qi1, qi2, . . . are independent ofi, hence

SA(B) =
∑

i p
d
i Si (B)∑
j p

d
j

= S(B)
∑

i p
d
i∑

j p
d
j

= S(B).
These last two assumptions deserve some comments. In (III.I) we have introduced

S(AB) with a general parametera and we also assume that it does not depend on the
systemsA andB. The last term of this relation represents a breakdown of the extensive
property of standard theory, except fora→ 0 (we will show that we can recover the form
of standard entropy for the composite system). Moreover, the use of this general parameter
opens the possibility of studying different forms of generalized entropies. In (III.II) we have
the generalization of normalized mean conditional entropy with the parameterd. Certainly,
SA(B) depends on both the probabilities and the parameterd. We will show that the
parametera along withd are important to obtain new forms of generalized entropies. For
instance, we will show that ifa tends to zero,d must tend to 1 (and vice versa) and so we
recover the standard entropy and the usual mean value. Therefore, to obtain generalized
entropies we must taked 6= 1 anda 6= 0.

Now, in order to obtain the generalized entropies we divide the problem into two steps.
In the first step we use assumptions (I), (II) and (III.I) for the non-interacting systems to
prove thatS(1/n, . . . ,1/n) = 1

a
[−1 + nb]. The entropy at the equilibrium system is a

non-decreasing function of its arguments

L(n) ≡ S(1/n, . . . ,1/n, 0) 6 S(1/(n+ 1), . . . ,1/(n+ 1)) = L(n+ 1). (2.4)

Next, we considerm mutually independent schemesA(j) (j = 1, 2, . . . , m), each
consisting ofr equally likely events. If we consider them as a single scheme we have
rm equally likely events with entropyL(rm). If we now consider them as a product scheme
the entropy is calculated (using (III.I)) as follows.
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Form = 2, it is immediately verified that

L(r2) = 2L(r)+ a[L(r)]2 = 1

a
[(1+ aL(r))2− 1]. (2.5)

For m = 3, the product scheme can be calculated in the following way. We consider
these three schemes as independent systems and each of them hasr equally likely events.
This way, we can first calculate the entropy by choosing any two of these systems and the
result is given by (2.5). Then, we use this result with the third system and assumption (III.I)
to obtain that

L(r3) = 1

a
[(1+ aL(r))2− 1]+ L(r)+ a · L(r) · 1

a
[(1+ aL(r))2− 1]

= 1

a
[(1+ aL(r))3− 1].

For all positive integersr andm, we use the induction method, and we have

L(rm) = 1

a
[(1+ aL(r))m − 1]. (2.6)

This is the generalization of standard entropy, i.e. in the limita → 0 we recover the
well known resultL(rm) = mL(r).

It is easy to guess that the following function satisfies (2.6)

L(r) = 1

a
[−1+ rb] (2.7)

whereb is a constant.
It is noteworthy that, to recover the additivity property for entropy, we must take both,

a andb from equation (2.7) tending to zero, simultaneously.
To prove (2.7) we assumer, s andn are arbitrary positive integers withm determined

by

rm 6 sn 6 rm+1. (2.8)

By applying the logarithm in (2.8) we have

m

n
6 ln s

ln r
6 m+ 1

n
. (2.9)

On the other hand, we writeL(x) for each termx of (2.8), i.e.L(rm) 6 L(sn) 6 L(rm+1).

Then, using relation (2.6), we obtain

m

n
6 ln(1+ aL(s))

ln(1+ aL(r)) 6
m+ 1

n
. (2.10)

Combining (2.9) and (2.10), we find that∣∣∣∣ ln(1+ aL(s))ln(1+ aL(r)) −
ln s

ln r

∣∣∣∣ 6 1

n
. (2.11)

Sincen is arbitrary, we can taken arbitrarily high value, and we obtain

ln(1+ aL(s))
ln(s)

= ln(1+ aL(r))
ln(r)

= b (2.12)

whereb is a constant independent ofs andr. Therefore,

L(n) = 1

a
[−1+ nb] (2.13)

for all n. This is in accordance with equation (2.7). From equation (2.4), we immediately
verify that b > 0.
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In the next step, we consider two interacting systemsA and B to prove that
S(p1, . . . , pn) =

∑
i (p

d
i − 1)/a. To do so, we suppose two interacting probability schemes

A andB. Consider that then probabilities ofA giving by pi = gi/g, where theg’s are
positive integers with

∑
i gi = g. Consider that a dependent schemeB hasn groups of

events so that theith group hasgi events. If eventAi occurs, we assume that all events of
the ith group are equally likely with probability 1/gi . Hence, the conditional entropySi(B)
of B, givenA is in stateAi , is obtained by (2.13), replacingn by gi

Si(gi) = 1

a
[−1+ gbi ]. (2.14)

By using (III.II) we have

SA(B) =
∑

i p
d
i Si(B)∑
j p

d
j

=
∑

i p
d
i (−1+ gbi )
a
∑
j p

d
j

. (2.15)

However, the entropy of a composite system at the equilibrium state consists ofg equally
likely events

S(AB) = 1

a
[−1+ gb]. (2.16)

It follows from (III.II) that

S(A) = S(AB)− SA(B)
1+ aSA(B) =

∑
i (p

d
i − pb+di )

a
∑
j p

b+d
j

. (2.17)

As we can see, equation (2.17) contains three arbitrary constantsa, b andd; to obtain the
mean entropy we should takeb + d = 1. Consequently,

S(A) =
∑

i p
d
i − 1

a
(2.18)

where we have used the condition
∑

i pi = 1.
We should note that if we take the parameterd in (2.18) tending to 1 we must take

a tending to zero and so we recover the standard entropy. As a consequence, to obtain
the generalized entropies with a non-extensive property given by (III.I) we need to use the
unusual average, i.e. it should haved 6= 1 anda 6= 0.

Of course, the entropy (2.18) can assume many different forms depending on the
expressions ofa andd. For example, ford = q anda = (1− q)/k we obtainb = 1− q
andq 6 1, henceS becomes

STq = k
1−∑i p

q

i

q − 1
. (2.19)

This is equal to equation (1.1). Moreover,STq may be rewritten as follows

STq =
∑

i p
q

i (p
1−q
i − 1)

(q − 1)/k
=
∑
i

p
q

i S
T
qi(pi) (2.20)

and

STqi(pi) = −k(1− p1−q
i )/(q − 1). (2.21)

So, we may interpretSTq as an average (or mean) that has been taken over a probability
distribution {pqi }. In addition, it is important to emphasize that the form of this average is
in agreement with the mean internal energyUq =

∑
i p

q

i εi obtained by Curado and Tsallis
[4] which they have used to obtain the connection with the thermodynamics.
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Now, for d = q anda = 21−q − 1 we obtain the Daŕoczi entropy [5]

SDq =
∑

i p
q

i − 1

21−q − 1
. (2.22)

These entropiesSTq and SDq are equivalent because they only differ by a multiplicative
constant. Furthermore, we should note that in both cases,a andb tend to zero forq → 1,
simultaneously. This means that the extensivity limit is preserved for both entropies.

Certainly, we can make other kinds of entropies by taking different forms ofa(q) and
d(q). However, it is easy to show that they can be transformed from one to another and the
differences among them are a multiplicative constant. Therefore, they constitute a family
of equivalent generalized entropies.

3. General behaviour ofSTq for two interacting systems

In this section we address the question of the general behaviour of the generalized Tsallis
entropy for two interacting systems. In particular, we analyse the problem of decreasing
Tsallis entropy related to the additional information on the system. To do so, let us use the
following inequality, valid for any continuous strictly monotonic convex functionφ(x) (see
[6, theorem 86]).

φ

(∑
i

aixi

)
6
∑
i

[aiφ(xi)] (3.1)

whereai > 0 andxi > 0 such that
∑

i xi = 1.
Now, for Tsallis entropy we considerφ(xi) given by

φ(x) = x − xq
1− q for q > 0. (3.2)

From this and equation (3.1) we have that

gj − gqj
1− q =

∑
i p

q

i gij − (
∑

i p
q

i gij )
q

1− q 6
∑
i

p
q

i (gij−g
q

ij )

1− q (3.3)

wheregj is as the total probability
∑

i p
q

i gij of finding the eventBj in systemB. Now,
adding overj and multiplying by−k we immediately find that

SA(B) 6 S(B). (3.4)

This inequality can be easily extended to

S(AB) = S(A)+ SA(B)+ (1− q)S(A)SA(B) 6 S(A)+ S(B)+ (1− q)S(A)S(B). (3.5)

Therefore, we have obtained the remarkable result that the additional information on
the system decreases the entropy. The well known example of this result can be associated
to Maxwell’s demon, which is capable of decreasing entropy by using the information of
the system without the performance of work.

4. Conclusion

Therefore, we have shown that in order to obtain the generalized entropies we have modified,
in a smooth way, one of the three assumptions given in Landsberg [3]. In particular, we
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have replaced the additivity propertyS(AB) = S(A)+ S(B) by S(AB) = S(A)+ S(B)+
aS(A)S(B) and the normalized mean conditional entropySA(B) =

∑
i piSi(B) by

SA(B) =
∑

i p
d
i Si(B)∑
j p

d
j

and we have also used the basic concepts of thermostatistics. By using the three assumptions
(I), (II) and (III) we have shown that there is a family of equivalent generalized entropies
including the cases of Tsallis and Daróczi entropies. In addition, we have obtained the mean
entropy (2.20) which was taken over the probability distribution{pqi }. This is in accordance
with the mean internal energyUq =

∑
i p

q

i εi obtained by Curado and Tsallis [4] which they
have used to obtain the connection with the thermodynamics. Therefore, this approach is
very close to the development of the standard statistics†.

We have also discussed the general behaviour ofSTq for two interacting systems. It is
shown by (3.5) that the entropy decreases with the additional information on the system.
This means that Maxwell’s demon also acts onSTq .
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